The Embedded Experts

Development Environment

Developing with SEGGER Embedded Studio

SEGGER Embedded Studio is a streamlined and
powerful C/C+ + IDE (Integrated Development Envi-
ronment) for ARM microcontrollers. It is specifically
designed to provide everything needed for profes-
sional embedded development: an all-in-one solution
providing continuous workflow.

Cross-Platform Support

SEGGER Embedded Studio is available for Windows,
OS X and Linux. Its look and feel is similar on all plat-
forms to provide the best experience regardless of the
operating system.

Target Support

SEGGER Embedded Studio can be used with
ARM®7, ARM®9, and the complete ARM® Cortex®
microcontroller series.

SEGGER Embedded Studio offers a reduced cost
license for those working only with Cortex®-M, and
alternatively a license which covers the full range of
supported ARM® microcontrollers.

Powerful Project Manager

An advanced Project Manager is included with SEG-
GER Embedded Studio which enables simple man-
agement of extremely large projects and multi-project
solutions.

SEGGER Embedded Studio's Package Manager pro-
vides access to Support Packages for various ARM
MCUs which can be installed on demand and up-
dated when a new version is available. The Support
Packages make starting a new project for new target
hardware as simple as clicking a button.

Compiler Included
SEGGER Embedded Studio comes with advanced
GCC and LLVM compilers for ARM® microcontrollers.
With its highly-optimized, royalty-free, ANSI/ISO-C
compliant standard C library, which has been devel-
oped specifically for embedded applications, you can

expect the highest performance for your applications.

Feature-packed Debugger

SEGGER Embedded Studio integrates a fea-
ture-packed graphical Debugger with enhanced
J-Link integration for direct debugging on your target
hardware. All of the industry leading J-Link fea-
tures have been tightly integrated into
SEGGER Embedded Studio.
The debugger includes var-

ious debugging windows,

which make it possible to
inspect and manipulate ad-
vanced information concern-
ing the running application and

its execution, including mixed-
mode disassembly, source code,
an 1/O Terminal for semihosting,
SWO, SEGGER's Real-Time Trans-
fer, and a scriptable Threads Window
to be used with any (real-time) operat-
ing system.

First-Class Editor

The first-class Source Code Editor does not only
support user-defined syntax highlighting, automatic
code indention and matching bracket highlighting, it
also provides a code completion feature for symbols,
functions and keywords of your application, as well
as configurable code and comment templates to eas-
ily match your coding and documentation standards.
The Editor is highly integrated into the Project Man-
ager for efficient and advanced search and replace
functionality in your files, projects and solutions. The
behavior of all features is fully user-configurable.

Features

Windows, Mac OS X and Linux support
Powerful Project Manager, even for huge projects
Advanced first-class Editor

Package-based Project Generator for all common microcontrollers
Pre-built C/C+ + Compiler, GCC and LLVM included for an immediate start

Feature packed Debugger

A graphical Debugger with J-Link inte-
gration and mixed-mode disassembly.
I/O Terminal for semihosting. Threads
Windows to be used with any
(real-time) OS.

= i
|5 Helio - SEGGER Embedded Studia

Powerful Project Manger e
Capable of managing
huge and multi-project
solutions easily. Provides
access to Support Pack-
ages for various ARM
MCUs.

0 K- &F & o

Compiler included
LLVM based and industry
standard GCC compiler. [
Pre-built for ARM micro- i | Tl LT
Mapping project information 2 projects in 001

H 1 Completed 2000 projects/s
ContrO”erS- nghly-optl- -.Plenmmwhﬂo'n'ﬁéi'o'> 2 projects in 023
m|Zed, royalty_free ANSI / i 7 ;::::r::d-hleﬁompmi\msmion o
ISO C compliant standard

C/C++ library.

0 fitesy's

Feature-packed Debugger with seamless J-Link integration

Competed in0.15

Royality-free ANSI / ISO C compliant C library for embedded systems

First-Class Editor

Syntax highlighting with automatic
code indention and matching bracket
highlighting. Code completion for
symbols, functions and keywords.

|i-|e Edit Wiew Search ' cNaigate Tempiates Project Fuid Debug Target VIS Iook Window Help K i standara

| D% B0 &R 1 4@ X . -

n, ackuffer, 1)

) Disconnected &) Built Ok INS R+W L31Coll

Debug Probes

J-Link & J-Trace Debug Probes

SEGGER J-Links are the most widely used line
of debug probes available today. They have
proven their worth for more than 10 years with
over 400,000 units sold. This popularity stems
from the unparalleled performance, extensive
feature set, large number of supported CPUs,
and compatibility with all popular development
environments.

Debug Smarter and Faster with J-Link!

With up to 3 MByte per second download speed to
RAM and record-breaking flashloaders, and with the
ability to set an unlimited number of breakpoints in
flash memory of MCUs, J-Link debug probes are un-
doubtedly the best choice to optimize your debug-
ging and flash programming experience.

Extensive Device & IDE Support

J-Link debug probes support all ARM 7/9/11, Cor-
tex™, Microchip PIC32™, Renesas RX™ CPUs and
are supported by all major IDEs such as Keil MDK-
ARM, GDB-based IDEs and SEGGER Embedded
Studio.

Direct Download into Flash Memory

J-Link can program the internal flash of almost all
popular microcontrollers as well as external CFl com-
pliant flashes. From a debugger perspective, the
flash area can be treated just like RAM, so this great
feature works with any debugger, including GDB.

Intelligence in the Firmware

In contrast to other Debug Probes J-Link has intel-
ligence for different CPU cores in its firmware. For
most emulators, the CPU communication handling is
done completely from the PC side while the emulator
simply outputs some PC-generated sequences. This

makes special handling for scenarios like "low-pow-
er" and "very slow CPU speed at very high debug in-
terface speed" almost impossible to handle. Having
intelligent emulator firmware which is able to handle
such cases itself, makes J-Link more

robust in these situations.

Software De-
velopment Kit
(SDK)

For customers
who want to
build their own
applications us-

ing J-Link, and

for IDE vendors
who implement
J-Link support for
their IDE, SEGGER
offers a J-Link SDK
which comes with the
J-Link DLL + API documenta-

tion + implementation samples. The
SDK is available for Windows and Linux.

Cross-Platform Support

The Following platforms are supported: Windows,
Linux, Mac OS X. The versions are fully usable and
contain the following components: J-Link Com-
mander, Command line GDB-Server, Shared library
(DLL-equivalent).

Supports SWV/SWO

J-Link fully supports ARM's SWV/SWO feature which
is available for most devices which support the SWD
interface. SWO is a single pin output from the core
which can be used to transfer terminal data (printf)
and also, real-time trace data. The later enables mon-
itoring of variable read and write accesses in compat-
ible processors.

Features

Support for ARM® Cortex®M/R/A cores and ARM®7/9/11, Microchip PIC32, Renesas RX and Silicon Labs 8051
Maximum JTAG speed 15 MHz, J-Link ULTRA+ /PRO: 50 MHz
Download speed up to 1.5 MB/s (J-Link®/J-Link® PLUS), 3 MB/s (J-Link® ULTRA+ /PRO)

Very fast flash loader
Supported by all popular debuggers

Support for different debug interfaces: JTAG/SWD/FINE/SPD/ICSP
Serial Wire Viewer (SWV) with up to 7.5/25 MHz supported

Host interface: USB, Ethernet

Power over USB

Support for adaptive clocking

Mulit-core debugging supported

Wide target voltage range: 1.2V - 5.0V tolerant

J-Link Remote Server included, which allows using J-Link via TCP/IP networks

SDK available

Real Time Transfer

Real Time Transfer (RTT) is SEGGER's new technology for
interactive user 1/0O in embedded applications. It combines
the advantages of SWO and semihosting at very high per-
formance, with data transfer speed reaching up to 2 MByte
per second while retaining the real-time behaviour of the
target system.

Unlimited Flash Breakpoints

The Unlimited Flash Breakpoints feature allows the user to
set an unlimited number of breakpoints when debugging
in flash memory. Without this feature, the number of break-
points which can be set in flash is limited to the number
of hardware breakpoints supported by the debug unit of
the CPU. Unlimited Flash Breakpoints works in both internal
and external flash, even with memory-mapped flashes.

Monitor Mode Debugging

Monitor Mode Debugging enables an embedded system
based on a Cortex-M3, M4 or M7 core to maintain essential

functionality while being debugged. This offers the possibil-
ity to maintain real-time, user-defined functions in selected
interrupt services, such as motor control, data acquisition,
or any application that needs some kind of continuous op-
eration.

Remote Server Debugging in Tunnel Mode

The J-Link Remote Server effortlessly debugs target hard-
ware and application in remote locations over TCP/IP as if
the target was on the developer's desk. Taking this concept
to the next level, SEGGER offers a tunnel mode for remote
debugging anywhere in the world.

Tunnel mode initiates the connection sending the serial
number of the J-Link to the tunnel server. The J-Link DLL
then is capable of creating a tunnel connection via the serv-
er just by using the serial number of the target J-Link.
Support engineers can debug unwieldy hardware at the
customer's site without having to travel there, just by send-
ing a J-Link. Distributed development teams can share ear-
ly prototypes even in remote locations.

Debug Probes

Sophisticated Tools for use with J-Link Technology

SEGGER SystemView

SystemView is a new tool for the visual analysis of
any embedded system. It provides complete insight
into the runtime behavior of an application, with mini-
mal side effects on the observed embedded system.
Using SystemView with J-Link gives the additional
benefit of unlimited recording capacity and real-time
analysis. In order to ensure real-time delivery of data,
SystemView makes use of RTT.

J-Scope

J-Scope is a focused tool that visualizes data on a mi-
crocontroller in real-time, while the target is running.

It does not require features like SWO or any extra pin
on the target, but it only uses the existing debug port.
J-Scope can show the value of multiple variables in
an oscilloscope-like style. It reads an ELF file and al-
lows selection of a number of variables to visualize.
Simply connect the target microcontroller to a J-Link,
flash an application and start J-Scope.

A visual graph and data is now available for analysis
and manipulation, such as scrolling, zooming in and
out, or saving the data to a file for further analysis.
J-Scope can be used in parallel with your debugging
environment and extends your IDE's debugging ex-
perience.

|/ I SEGGER Sitioeninunts VA0 - ermbOSAP Wieknarves [sns05] o MIBSFAIMInatE SR 5|
Fle Yeew fshemiew [iindew Hep
AEENE
¥ fiemptasg Cesieat Pregerty Dail
& Gepter
! i B Hame b CA P Wbt i
.l 1 & embl
1 P Deoce S F A 3
i 1 % {5 Timahats 10500000 Hz
= =) Pericd B
i fT— DT
- & Ttk
] E Swtch Count 1374
0d-0R 38285 003
T — W NG i (I ,
! 1 E II |) E || 1 :
I; ’i] |i 11 1
] | Jil g [! 1 |
s an [i Hi b L | -
S T — R

Hame Typa Acteatiorn Fregpeancy Tet. Runtime |

i

418 hl e A0 ma
2063 T 13380 ma
bl M5 H: 3L 85D ma

1% THr E143 ma

2 Lo M1 m

3 bl 5173 ma

e 12 H: 4Nz

wistion Losd Puak Losd bl Tichs Seg® =

3304 e LBl 035Y D%
B0 mi IFemi OGL% LEl %
BET6d ok OUDOE P L% 1Ea%
Bl e Darm: OO DTS
SR my L% 1%
ETEE mit LB 0ITh
B 5IT . D0 e S0AIN FITN

Debugging with J-Link Debugger

J-Link Debugger is a full-featured graphical debugger for
embedded applications. With J-Link Debugger it is possi-
ble to debug any embedded application at C source and
assembly level. J-Link Debugger can load applications
built with any toolchain / IDE or debug the target's resident
application without any source. J-Link Debugger includes
extensive debug information windows and makes use of
the best performance of J-Link debug probes. The user in-
terface is designed to be intuitive and is fully configurable.
All windows can be moved, re-sized and closed to fit the
need of any developer.

Features

Blindingly fast debug and step performance
Modern, intuitive user interface

Precision stepping at source or assembly
level

Thread-aware debugging (customizable)

C code source level debugging and assembly
instruction debugging

Direct use of J-Link built-in features
Extensive debug & processor state windows
Scriptable project files

Project Browser
Lists all files or
functions included
i with the current
2 project. Offers a
- search function as
well.

Breakpoints
Displays all active
breakpoints includ-
ing location and
allows manipulation
of the breakpoints.

ed from the debugger
and serves as a com-

debugger

Logs commands execut-

mand line interface to the

Source Code
Source code dis-

Disassembly
Displays the

play including color assembler code re-
coding for better lated to the current - O
readability. piece of C source s
code.
o oy
S= s TR TS - & 7
13 7. A _
. = Register Watch
Allows monitoring and mod-
ification of CPU and periph-
eral registers. The history of
changes is indicated by the
== background color.
—y -
=
e
’._ Data Watch
[» Allows monitoring and mod-
. ification of global and local
Console LIl variables.

Used to display SWO or
J-Link RTT output

"Wl EEmTTELD

i_i]ﬁliiill?F it 0,3
i

TR EETTREE y 1|

FTTTCCTIT N IEN T L OO

Bt
i

E
A
iE

L

= |

e
L

AN MO |

embOS is a real time operating system for embedded
applications designed to offer the benefits of a fully
featured multitasking system, even for hard real time
applications using minimal resources.

Developing applications with embOS

embQOS is available in source or object code form.
Both come with a ready-to-go start project: The first
multi-task program will be running within five minutes.
The start application and usable samples are sup-
plied in source code form. Libraries for all memory
models and initialization of the controller in C-source
are included to tailor the system to any application.
Check out the free fully functional trial versions, which
can be downloaded from our website www.embos.
com.

Profiling using embOSView

embOSView communicates with embOS running on
the target over a UART and displays all available in-
formation of the tasks and major system variables.
All communication is done from within the communi-
cation interrupt routines. This means that it is non-in-
trusive if embOSView is not connected and minimally
intrusive while embOSView is connected. On most
CPUs a profiling build of the libraries is available. In
profiling build, embQOS collects precise timing infor-
mation for every task, which enables embOSView to
show the CPU load.

Zero Latency Interrupts

embOS is perfectly suited for hard real time condi-
tions as it does not block high priority or zero latency
interrupts. High priority interrupts do not add addition-
al latency or jitter from the operating system. When
an RTOS modifies its data structures, it has to block
access to its data structures. In order to achieve that,
low priority interrupts are blocked. High priority inter-
rupts cannot call OS functions.

= -

Bten THVE) THON Fyiimte 15 1100 Bt TG et 10

(embOSView)

Simulation environment

A simulation environment running under MS Win-
dows is available. It can be used to write and test the
entire application on your PC (all routines are 100%
identical to your embedded application). This makes
debugging and development easy and convenient
and saves development time. The simulation is an
open environment, which also allows adding C-code
to simulate the target specific hardware. embOS
Simulation comes with a ready-to-go start project for
MSVC, but may also be used with other tool chains.
A trial version is available upon request.

Power-Saving Tickless Mode

embOS tickless low power support reduces the pow-
er consumption for e.g. battery powered devices. In-
stead of having a timer interrupt for each system tick
the timer is reprogrammed to be able to spend as
much time as possible in low power mode.

M
D
Q0
—
=
=
D
(7]

Preemptive scheduling
Unlimited priorities

Round-robin scheduling for tasks with identical
priorities.

No configuration needed
Intertask communication
Software timer

No royalties

Technical info

Kernel size (ROM)
Kernel RAM usage

1100 - 1600 byte *
18 - 25 byte *

Kernel CPU usage at 1 ms Less than 3%

Interrupts with 10MHz M16C
RAM usage mailbox 9-15 byte *

RAM usage binary and counting 3 byte

semaphore

RAM usage resource semaphore 4 -5 byte *
4 -5 byte *
RAM usage event 0

RAM usage timer

Basic time unit (One Tick)

Task activation time

Interrupt latency Zero
No. of tasks

No. of mailboxes
No. of semaphores
No. of s/w timers
Unlimited
Unlimited

No. of priorities

No. of tasks with identical
priorities (Round robin
scheduling)

* Depends on CPU, compiler and library model used

Default 1 ms, can be configured,
Min. 100 us (M16C@10MHz) *

Independent of no. of tasks (e.g.
typically 12 us M16C@10MHz)

Unlimited (by available RAM only

(

Unlimited (by available RAM only

Unlimited (by available RAM only
(

Unlimited (by available RAM only

Fast & efficient
Small footprint

Easy to use start project

Versatile

Zero interrupt latency

Supported directly by developers

System analysis tool included

Profiling support

Supported processor families

All major 8-, 16-, and 32-bit processor families

are supported.

I
uDE\l'E‘ES

Atmel
= treescale
Tnfi neon

1

MasEDOC e

MIPS

T iy

Sl HoRmIC

]

%
A
REMNESAST

=

FRINNT TR E

Lyrs

o
SPAHSIGH
-

43 T _—

TOSHIEA

£ XILINX

Data Management

Data Storage with emFile

emFile is a file system for embedded applications
which can be used on any type of storage device.
empFile is a high performance library that has been
optimized for minimum memory consumption in RAM
and ROM, high speed and versatility. It is written in
ANSI C and can be used on any CPU.

Device Drivers

empFile is designed to cooperate with any kind of em-
bedded system and storage device. To use a specific
medium with emFile, a device driver for that medium
is required. The device driver consists of basic 1/0
functions for accessing the hardware and a global ta-
ble, which holds pointers to these functions.

If you need to use a proprietary storage device, you
can write your own device driver. Currently the follow-
ing device drivers are available:

MultiMediaCard (MMC), Secure Digital (SD), RAM
disk, Compact Flash, IDE, NOR flash, and NAND
flash.

NOR/NAND Flashes

The Universal NAND flash driver works with all mod-
ern SLC and MLC NAND flashes. It can use the ECC

SEGGER NAND flash
evaluation board

engine built into NAND flashes to correct multi bit er-
rors. The driver also works with SLC flashes which
require 1-bit error correction and supports ATMEL's

DataFlashes.

To enable the use of large NAND flash memories,
the NAND flash driver allows block grouping to save
memory required for administration of the memory
blocks. The NOR flash driver can be used with any
CFIl compliant 16-bit chip. The Common Flash Mem-
ory Interface (CFl) is an open specification which may
be implemented freely by flash memory vendors in
their devices.

Wear Levelling

Wear levelling is supported by the NOR/NAND driver.
Wear levelling makes sure that the number of erase
cycles remains approximately equal for each sector,
thus prolonging the life span of the whole flash mem-
ory. Maximum erase count difference is set to 5. This
value specifies a maximum difference of erase counts
for different physical sectors before the wear level-
ling uses the sector with the lowest erase count. In
contrast to other products on the market, SEGGER’s
emPFile offers both static and dynamic wear levelling.
In order to keep erase cycles on the same level for
all sectors, static data is regularly moved around to
different sectors.

MMC and SD Cards

MMC and SD cards can be accessed through two
different modes: either SPI MODE or MMC/SD card
mode. For both modes drivers are available. To use
one of these drivers, you need to configure the MMC
driver and provide basic 1/O functions for accessing
your card reader hardware.

Encryption

The emFile Encryption add-on provides a simple way
to encrypt individual files or the storage media as a
whole. Encryption can be used with both available
file systems - EFS and FAT. All storage types such
as NAND, NOR, SD/MMC/CompactFlash cards are
supported. To use encryption, only minor changes
to the application program are required in order to

Features

MS DOS/MS Windows-compatible FAT12, FAT16 and FAT32 support, proprietary EFS file system

Support for long file names

Multiple device driver support.

Multiple media support. A device driver allows you to access different media at the same time

Cache support. Improves the performance of the file system by keeping the last recently used sectors in RAM
Works with any operating system to accomplish a thread-safe environment

ANSI C stdio.h-like API for user applications.

Very simple device driver structure. emFile device drivers need only basic functions for reading and writing a block
Optional NOR flash (EEPROM) driver. Any CFl-compliant NOR flash is supported. Wear levelling included
Optional device driver for NAND flash devices. Very high read/write speeds. ECC and wear levelling included
An optional device driver for MultiMedia & SD cards using SPI mode or card mode that can be easily integrated
An optional IDE driver, which is also suitable for CompactFlash using either True IDE or Memory Mapped mode
An optional proprietary file system (EFS) with native long file name support

An optional journaling add-on. It protects the integrity of file system against unexpected resets

NAND flash evaluation board available

select the encryption method and a password for volume or
individual files.

Journaling

Journaling is an additional component for emFile which sits
above the file system and makes the file system layer fail-
safe. File systems without journaling support (for example,
FAT) are not fail-safe. Journaling means that a file system
logs all changes to a journal before committing them to the
main file system. To prevent corruptions from unexpected in-
terruptions, caused for example by a power failure, the Jour-
naling Layer caches every write access to achieve an always
consistent state of the file system.

Memory requirements*

Memory requirements depend on the used CPU, compiler,
memory model, as well as on various other factors such as
configuration switches and selected drivers.

ROM: app. 9-40 kb * Precise values depend on the functionality used.
. Values are measured on a specific target system and
RAM: Elelpk 2kb will be different on other systems.

Data Management

Shrink data with emCompress

emCompress is a compression system that is able to
reduce the storage requirements of data to be em-
bedded into an application. A compressed version
of the data is stored in the flash memory of the tar-
get system. In the target, a small, fast decompressor
can decompress the data on-the-fly, whenever it is
required. The decompressor can decompress into
RAM or send the output to an application defined
function.

Software only grows in one direction

With increasing complexity of today's devices, cus-
tomers expect firmware updates over the lifetime of a
device. It's important to be able to replace both firm-
ware images and FPGA configuration bitstreams in
the field. Typically, firmware upgrades and other stat-
ic content grow in size over the lifetime of a device:
features are added to software, not taken away, it's
just what happens.

This is where emCompress can help. emCompress
will compress your data so that it takes much less
space on the target device. The decompressors are
tiny in ROM, but the benefits of compression means
you reclaim more space in your device for the fea-
tures you're trying to add.

Because emCompress decompressors can be tai-
lored for RAM use, you can decompress static con-
tent early in your application and not devote RAM to
decompression buffers.

Typical example -
Configuring an FPGA

For instance, configuring an FPGA is one of the first
things that an application will do, decompressing a
bitstream and sending it to the FPGA. In this case, a
small decompression buffer can be held on the stack
even though the compressed bitstream is hundreds
of kilobytes in size: the temporary buffer is a known
size that is configured at compression time, and that
RAM is free for reuse the moment any decompres-
sion completes.

e—i3@
(il

Ny

emCompress enables microcontrollers with small in-
ternal flash memory to store FPGA image bitstreams
which otherwise would require the system designer
to use a bigger version of the microcontroller.

Decompressing and Processing Data

emCompress features two decompression functions.
The first one is decompression into memory. The
complete data is decompressed and stored in a
user-provided memory buffer. Although the buffer
can be temporary, this requires to have enough free
memory for the complete uncompressed data and
the workspace. Decompression into memory can for
example be useful for dynamic firmware images.

The second function is decompression in streamed
mode. emCompress will use a small temporary buff-
er whose size is set by the user when compressing.
Once a fragment of data is decompressed and the
buffer is filled, the user-provided output function is
called and the next buffer filled again with the next
fragment. Streamed decompression is particular-
ly effective for programming FPGAs or serving web
content.

Features

Highly efficient compression
Small decompressor ROM footprint

Fixed decompressor RAM use, chosen when compressing

Wide range of codecs to choose from
Automatic selection of best codec for each file

Works with any operating system to accomplish a thread-safe environment

Easy-to-understand and simple-to-use
Simple to configure and integrate
Royalty free

Group mode offers better compression!

emCompress can boost compression ratios using group
mode when compressing many small files. In group mode,
the uncompressed source files are concatenated and com-
pressed as a whole, increasing the opportunities for the
compressor to find ways to compress the combined data.
This proves especially effective when compressing small,
static HTML files for embedded web servers.

Performance and Memory Footprint

ROM use

The amount of ROM that emCompress uses for decom-
pression varies with the codec selected between 0.5 kByte
and 2.1 kByte. The total ROM requirement includes a single
decoder, and all supporting functions, excluding integrity
checks.

RAM use

The amount of RAM that emCompress uses is under com-
plete control as it is specified at compression time. Typical-
ly, 2KB of temporary RAM for decompression yield good

Uncompressed Single File Mode Group Mode

Compressed date size

Compression Mode

compression ratios, but even without temporary RAM, good
compression ratios can be achieved in many cases. No
static RAM is required, stack usage is well below 512 bytes.

Typical uses of emCompress

Compression has many fields of application. Static data
that is not frequently used and or has exceptionally high
compression rates are the prime target applications. Typ-
ical examples are the configuration bitstreams to program
FPGA and CPLD devices, permanent files for embedded
web server static content, firmware updates and the user
interface messages for multiple languages.

Connectivity

AW

Get connected with embOS/IP

embOS/IP is a TCP/IP stack that provides a small
memory footprint, high performance solution for em-
bedded networking solutions. The stack has been
optimized for use in real-time, memory-constrained
embedded systems. It offers RFC-compliant TCP/IP
and a standard socket APIl. embOS/IP works seam-
lessly with the embOS operating system. Several
higher-level protocols are also available.

Easy to use

The stack comes with a variety of confidence tests
and example applications. It runs out of the box. For
most microcontrollers, sample projects are available.
All modules can output debug messages and warn-
ings in debug builds. The modules to output this in-
formation can be selected at run-time, allowing the
developer to focus on the aspect he is analyzing.

Configuration free

The entire stack can be compiled into a library. Set-
up is reduced to a minimum, performed at run-time.
This, along with a wealth of sample programs, gets
you up and running quickly. Since inter-module de-
pendencies are limited to the parts required for the
functionality of the stack, unused parts of the code
are automatically excluded by the linker.

Portability

embOS/IP is written in ANSI C and, apart from the
Link-Layer-Driver, hardware-independent.

Performance

The stack has been optimized for both, performance
and code size. The standard socket interface is
complemented by the zero-copy API, which allows
reading and writing of data without additional proto-
col buffers, if the target hardware and driver support
DMA.

Multi-task support
embOS/IP allows any number of tasks to call API

— . — %\"

/

\

B

.." [

functions concurrently. The stack itself uses typically
two tasks (one for housekeeping and one for packet
reception), but can also be used with just a single
or even no task (polled mode). The two-task model
allows minimum interrupt latency on systems without
nested interrupts.

embOS/IP structure
embOS/IP is organized in different layers:

Application Layer ~ DHCP, DNS, FTR HTTP, Telnet

Transport Layer TCPR, UDP

Network Layer IPv6, IPv4, ICMP, ARP, RARR ...

Link Layer Ethernet (IEEE 802.3), PPP, ...
embOS/IP Software Products

embOS/IP is offered in a BASE package which in-
cludes the most important protocols related to Eth-
ernet communication and the stack itself. Depending
on the engineer's needs there are several protocols
available as add-ons, as well as the embOS/IP PRO
software which includes a device driver, and all add-
ons for extended communication via Internet.

The following protocols are part of the basic
package:
ARP (Address resolution protocol)
IP (Internet protocol)
ICMP (Internet control message protocol)
UDP (User datagram protocol)
TCP (Transmission control protocol)
Standard Socket API
Zero-Copy API
DNS client
DHCP client
Telnet server (sample)

You can find the full list of additional modules here:
www.segger.com

TR VN e — Saem o

CER A=y, .

A QWA =

e

- . ~—— -

~— N ~ — -

Features

Standard sockets interface
High performance

Small footprint

Runs "out-of-the-box"

No configuration required

Works with any RTOS in a multitasking environ-
ment (embOS recommended)

Zero-copy for ultra-fast performance

Drivers for most popular microcontrollers and
external MACs available

Easy to use!

Optional Products

embOS/IP WEB SERVER

The embOS/IP web server allows embedded systems to
present web pages with dynamically generated content. It
has all features typically required by embedded systems:
multiple connections, authentication, forms. The RAM us-
age of the web server has been kept to a minimum by smart
buffer handling. The sockets interface can be used with any
TCP/IP stack.

embOS/IP FTP SERVER and FTP CLIENT

The embQOS/IP FTP server can use the same file system
as the web server. It can be used in r/o or in r/w mode and
allows reading and modifying of configuration data or web
content. With the FTP client add-on data can be exchanged
with any FTP server

emSSL Transport Layer

emSSL is a Transport Layer Security solution which allows
secure and private connections with single-chip systems
using as little as 7 kBytes of RAM. emSSL works perfectly
with embOS/IP. For more details about emSSL, please refer
to the product description on page 18.

—
"' /

Sl
<

Raw socket support

Non-blocking versions of all functions
Unlimited Connections

Re-assembly of fragmented packets
Fully runtime configurable

Developed from ground up for embedded
systems

PPP/PPPoE available
Various upper layer protocols available
Royalty-free

Available Add-ons

embOS/IP PPP LINK LAYER
As an alternative to Ethernet PPP allows the use of IP via
modem or GSM. Further add-ons are available.

embOS/IP UPnP
Universal Plug&Play module.

embOS/IP SNTP Client
Simple Network Time Protocol.

OS/IP SMTP Client
The Client allows to send emails from your embedded sys-
tem via an email server.

Memory requirements

Memory requirements depend on the used CPU, compiler,
memory model, as well as on various other factors.

A typical ROM size for a system using ARP, IP, ICMP, UDP,
TCP and sockets is about 18kB (on typical 32-bit micro-
controller with size optimization). Mimimum RAM usage is
about 6KB for simple applications.

Connectivity

TRV

Get connected with emUSB

emUSB Device is a high-speed USB device stack
specifically designed for embedded systems. The
software is written in ANSI C and can run on any
platform. emUSB can be used with embOS or any
other supported RTOS. A variety of target drivers are
already available. Support for new platforms can usu-
ally be added at no extra charge.

emUSB Components

SEGGER offers a flexible USB device stack structure.
The typical emUSB stack package consists of a target
driver designed for your target hardware, the emUSB
core and the Bulk, MSD, CDC or HID component,|
or any combination thereof. The different available
hardware drivers, the USB class drivers and the Bulk
communication component are additional packages,
which can be combined and ordered depending on
project requirements.

Bulk Communication Component

emUSB-Bulk allows developers to quickly and pain-
lessly develop software for an embedded device that
communicates with a PC via USB. The communica-
tion is like a single reliable high-speed channel (very
similar to a TCP connection). It allows the PC to send
and receive data with the embedded target. This per-
mits usage of the full bandwidth of the USB bus.

MSD Component

emUSB-MSD converts your embedded target device
into a USB mass storage device. Your target device
can then be plugged into a USB host like a PC and
accessed as an ordinary disk drive, without the need
to develop a kernel mode driver for the host operating
system. This is possible because the mass storage
class is one of the standard device classes, defined
by the USB Implementers Forum. Every major oper-
ating system on the market supports these device
classes out of the box. Since every major OS already
provides host drivers for USB mass storage devices,
there is no need to implement your own. The target

T

il B N

mg

device will be recognized as a mass storage device
and can be accessed directly.

User Application

" =
4
emUSB

USB class

Bulk]1 MSD] CcDC] HID '

Printer I MTP I RNDIS]

emUSB Core

Hardware Driver

r

/

User Hardware

Components overview

Features

ISO/ANSI-C source code
Supports USB 1.1 /2.0
Low/Full/High-Speed support

Bulk communication component with Windows
kernel mode driver available

MSD component available
Smart MSD works without file system

MTP Component

The MTP class supports file-based communication with the
host system for all types of files. MTP is an alternative to
MSD, without some of the latter’'s weaknesses. File based
communication gives access to the file system from the
host system (PC) and the device at the same time. Using
the MTP class also allows selectively exposing content of
the file system to the host system, typically a PC. Sudden
removal of the USB cable does not endanger the data in-
tegrity of the device’s file system.

CDC Component

emUSB-CDC converts the target device into a serial com-
munication device. The host will recognize it as a virtual
COM port (USB2COM). It allows the use of software which
is not designed to be used with USB, such as a device data-
logger or terminal program.

RNDIS Component (Internet via USB)

RNDIS enables developers to transform low end stand-
alone products into connected devices with the same func-
tionality as other devices on a local network. The most note-
worthy application is a USB based web server. The USB
web server allows users to configure their device and to
view data using a web browser. This saves development
costs as there is no need to develop an application for every
major operating system.

HID Component

The Human Interface Device class (HID) is an abstract
USB class protocol defined by the USB Implementers Fo-
rum. This protocol was defined for handling devices which

CDC component available
RNDIS component available
HID component available
Printer component available
Start/test applications supplied
No royalties

MTP component available

are used by humans to control the operation of computer
systems. An installation of a custom-host USB driver is not
necessary, because the USB human interface device class
is standardized and every major OS already provides host
drivers for it. emUSB device also allows “Vendor specific
HIDs.” These are HID devices communicating with an ap-
plication program. The host OS loads the same driver as for
any “true HID” and automatically enumerates the device.
The application communicates with the particular device
using API functions offered by the host. This allows an ap-
plication program to communicate with the device without
the need for loading a custom driver. The HID class is a
good choice if ease of use is important and high communi-
cation speed is not a requirement.

Printer Component

The USB class protocol for printers was defined for handling
output devices like printers and plotters. emUSB printer re-
ceives data from the host and forwards the data to a parser.
The printer component provides automatic error handling
routines, in case of events like the device running out of
paper. The USB protocol is completely hidden from the de-
veloper and he can concentrate on developing the parser.

emUSB Host

SEGGER's USB host software stack implements full USB
host functionality, including external hub support, and op-
tionally provides device class drivers. It enables developers
to easily add USB host functionality to embedded systems.
The software stack supports all transfer modes (control,
bulk, interrupt, isochronous) at low, full and high speed.

Security

Digital Asset Protection with emSecure

In today’s world, protecting one's reputation as a de-
vice manufacturer is more critical than ever before.
No company wants to make headlines for the wrong
reason. emSecure can help you in the fight against
firmware hacking and device cloning.

Keep Customers Safe

emSecure is a software solution to securely authen-
ticate digital assets, based on the concept of digital
signatures. Deploying emSecure can help authenti-
cate any plug-in card or attached device that contains
a microprocessor capable of running emSecure.

It is much simpler than digital certificates to imple-
ment and deploy, but offers the same level of pro-
tection and more flexibility. Critically, emSecure is not
licensed on a per-device basis, lowering your costs
for production runs.

Protect against Cloning

One important feature is that it protects an embedded
device against the creation of a clone by simply copy-
ing hardware and firmware.

Indispensable for Critical Devices

And it can do much more, such as securing firmware
updates for any kind of embedded device, licenses,
serial numbers or other sensitive data. emSecure is
therefore indispensable for critical devices such as
election machines and payment terminals or any
other tamper proof application in the industrial, auto-
motive and health care market. Based on asymmetric
encryption with two keys, it cannot be broken by re-
verse engineering.

Created for Embedded Systems

The source code has been created from scratch for
embedded systems, to achieve highest portability
with a small memory footprint and high performance.
However, usage is not restricted to embedded sys-
tems, but includes for example PC, and smartphone

apps.

Features

Alternative key generation schemes
RSA and ECDSA - Dual keys, private
and public make it 100% safe

Hardware-independent, any CPU, no
additional hardware needed

High performance, small memory
footprint

Simple API, easy to integrate

Applicable for new and existing prod-
ucts

Complete package, key generator and
tools included

Drag-and-drop Sign And Verify applica-
tion included

Full source code

Free 'Sign & Verify' Windows Version to
Protect Personal Files

Developer Friendly

It is licensed in the same way as other SEGGER mid-
dleware products and does not rely on any foreign
code or code licensed under an open-source or even
"viral" GPL-style license.

With its easy usage, it takes less than half a day to
add and integrate emSecure into an existing product.

Using emSecure is Easy

emSecure has a simple yet powerful API. It can be
easily integrated into an existing application. The
code is completely written in ANSI C and can be used
platform- and controller-independent.

Key pairs can be generated on a computer, as well as
on any embedded system itself. The generated keys
can be exported into different formats to be stored in
the application code or loaded from a key file. This
allows portability and exchangability between differ-
ent platforms.

Safe Data Transport with emSSL

emSSL is a SEGGER software library that enables se-
cure connections across the Internet. emSSL offers
both client and server capability. SSL/TLS is a must-
have in nearly every application which is connected
to the Internet. Products for loT, smart grid or home
automation markets benefit from securing their com-
munication.

Suitable for Single-Chip Systems

The mimized RAM usage enables operation of
emSSL on single-chip systems. a secure connection
between browser and the web server requires only 7
KB of RAM. This way, even small embedded devices
can establish secure connections.

Secured Connections

emSSL offers the possibility to establish a secured
connection to any server application from your pro-
duct. It can be used both target independent in native
computer applications, and in embedded targets.

The emSSL Package

emSSL is a complete package and comes with
everything needed to secure communication. It in-
cludes all modules to implement the required func-
tionality to use SSL. They are provided in source
code to allow complete control of the code used in
the product and create transparency to avoid wor-
ries about possible back doors or weakness in code,
which cannot be checked in precompiled libraries.

emSSL Makes it Easy

emSSL comes with a simple, yet powerful API to
make using emSSL in your product as easy as pos-
sible.

It also includes sample applications in binary and
source code, which demonstrate how and when
emSSL can be used in real life scenarios. For a list of
included applications, see the chapters below.

Features

ISO/ANSI C source code
Supports USB 1.1/ 2.0 devices
Full/High Speed support

Bulk communication component with
Windows kernel mode driver available

MSD component available
Virtual MSD works without file system
Sign & Verify drag-and-drop

FIPS specifications issued by NIST
(FIPS 186-4)

Performance

emSSL is built for high performance with target inde-
pendent code. It is completely written in ANSI-C and
can be used in any embedded application, as well as
in PC applications.

Configurable

emSSL is created for high performance and a low
memory footprint. The library can be configured to fit
any speed or size requirements. Unused features can
be excluded, additional features can easily be added.

Supported Cipher Suites

emSSL includes the most commonly used cipher
suites, which allows connection to nearly every
TLS-supporting server.

With emSSL the cipher suites can be added dynami-
cally. When the required cipher suites are known it is
possible to create a minimal size configuration by not
linking in unused algorithms. This is can be done by
the compiler/linker automatically. With the included
scan suites application it is possible to find out the
required cipher suite(s) to connect to a server.

User Interface

Graphical User Interface with

emWin is designed to provide an efficient, proces-
sor- and LCD controller-independent graphical user
interface (GUI) for any application that operates with
a graphical LCD. It is compatible with single-task and
multitask environments, with a proprietary operat-
ing system or with any commercial RTOS. emWin is
shipped as C source code. It may be adapted to any
physical and virtual display with any LCD controller
and CPU.

Attractive and useful display with
reduced time and cost

One of the most challenging aspects of many devel-
opment projects is designing an attractive and useful
display. In addition to creating images that look ex-
actly how you want them to appear, the implemen-

Example speedometer

tation of windows techniques, complex drawing rou-
tines, different fonts and flicker-free updates are also
expected. As part of a complex process which can
take months or even years, the developer only has
a short time available for the implementation of the
display functionality.

emWin, probably the most efficient and comprehen-

Win

sive embedded GUI available, helps developers beat
their timelines and development costs. It is written in
ANSI C and supports any b/w, gray-scale or color dis-
play. Drivers for all popular LCD controllers are avail-
able. All types of graphical displays (STN-LCD, TFT,
CRT, OLED, Plasma, ...) are supported.

Drivers for Display Controllers

Run-time configurable drivers can be written for all
types of displays and display controllers, including
monochrome, gray-scale, passive and active color
(TFT) displays. Drivers for all popular display control-
lers already exist.

GUIBuilder

The GUIBuilder gives developers and designers a
comprehensive tool to create the initial framework
of the user interface. The code generated by the
GUIBuilder can be modified and read back into the
GUIBuilder again which allows easier modifications
even at a later stage of the user interface develop-
ment.

Bitmap Converter

The Bitmap Converter can convert any bitmap into
standard C code or into a binary format which can
be located on any media and loaded at run-time. It
supports palette conversion for palette based color
modes as well as high color, true color or semi trans-
parent images as PNGs. For efficiency, bitmaps
may also be saved without palette data and in com-
pressed form.

Fonts

A variety of fonts are shipped with the software. The
default set of fonts includes quite small fonts up to
fairly large fonts, mono spaced and proportional
fonts, special digit fonts and framed fonts. Additional
fonts can easily be generated from PC fonts using the
Font Converter. Monotype and TrueType fonts sup-
port is available.

]

'li/'

r
I-h ¢ Firs e & Jrip

Fits “Hr.;r,,..,

i' [l F "

Features

ISO/ANSI C source code
Low resource usage
Alpha-Blending

Anti-Aliased drawing
Anti-Aliased fonts

Auto double / triple buffering

Multi-Language-Support with ASCII resource
files

Multi-Layer-Support

Memory devices for flicker-free animation
Free rotation and scaling
Run-time-configurable drivers

Start/test applications supplied

Font Converter

Font Converter is a Windows program that makes it easy
to add new fonts to emWin. It can convert any installed PC
font into a C file that can be compiled and linked with the
application or the binary formats ".sif' and ".xbf", which can
be loaded during runtime. Simply load a font which is in-
stalled on your system into the program, edit its appear-
ance if necessary, and save it. The generated file can then
be used by emWin and be shown on the display like any
other standard emWin font.

Color Management

emWin features an integrated, very efficient color man-
agement system. This system allows conversion of logical
colors (RGB format) into physical colors, which can be dis-
played at run time. As a result, your application does not
need to be concerned the available colors, and displays
can easily be interchanged.

Virtual Screen Support

The virtual screen feature supports display areas larger
than the physical size of the display. It allows switching be-
tween different screens even on slow CPUs.

Trigeoce:

PATTERN

No royalties
Any 8/16/32-bit CPU; only an ANSI “C” compiler
is required!

Any (monochrome, grayscale or color) LCD
with any controller supported(if the right driver
is available)

May work without LCD controller on smaller
displays

Any interface supported using configuration
macros

Display-size configurable

Characters and bitmaps may be written at any
point on the LCD, not just on even-numbered
byte addresses

Window Manager/Widgets

The window manager allows the creation of windows of
arbitrary size at any point of the display. It is an optional
component, which is fully integrated into the software. Child
windows and the exchange of messages between windows
and their children/parents are supported.

The window manager allows windows to be transparent
and overlapping. Windows can freely move and resize. Ad-
ditionally the window manager allows fading in and out.
The window manager performs any necessary clipping. If
callback routines are used, it also manages the redrawal of
invalidated areas.

Touch Screen Support

emWin supports touch, gesture and multitouch events. The
window manager deals with touch messages and widgets
such as button objects. It takes only one line of code to
create a button or another widget, which then handles
touch messages and reacts accordingly. For resistive touch
screens support is available as a driver for analog touch
panels, which handles the analog input (from an AD-con-
verter), debouncing and calibration of the touch screen is
included.

Production

Programming with SEGGER Flasher

The Flasher production tools are a family of
in-circuit-programmers with stand-alone pro-
gramming support. Each Flasher is optimized
for high programming speed and engineered
for robustness. The hardware and software in-
terfaces allow an easy integration into produc-
tion environments.

Simply press a button

Using the stand-alone option, service technicians
can update devices in the field by simply pressing a
button after the device has been set up and loaded
with the necessary programming information. With
the battery powered Flasher Portable, service tech-
nicians do not even need to carry an external power
supply to program their targets.

The programming information is stored together with
CRC data which has been generated on the host PC.
This CRC data is used to verify the integrity of the
data stored inside the Flasher and to verify the pro-
gramming success.

Interfaces for every need

In addition to the features like stand-alone operation
and RS232 interface, current SEGGER Flasher mod-
els support the host interfaces Ethernet and USB to
control the Flasher and transfer the programming
data into the Flasher. The programmers can also be
used in MSD mode to transfer the programming data.
Additionally they have an internal web-server.

Proven programming solution

Serial number programming and patch programming
to add additional variable information are supported.
The internal memory offers more than enough mem-
ory for programming data and configuration files. The
programmers operate at 5V via USB interface. The
Flasher family of stand-alone In-Circuit- Programmers
has been offered for many years now and is a proven
programming solution for numerous customers.

Multiple Images

Multiple firmware images and configurations can be
stored in the internal memory of the Flasher. Which
image or configuration is selected, can be selected
via the remote control interface using UART terminal
or Telnet via Ethernet.

Authorized Flashing

Authorized Flashing allows the customer to limit the
number of flash programming cycles and to protect
the Flasher against non-authorized access to the
customers software, thus preventing the production
of unwanted quantities by third parties. Authorized
Flashing is available for ARM, RX and PowerPC tar-
gets.

Flasher 5 Pro

Flasher 5 Pro is the successor of the Flasher 5. It has
64MB of flash memory to store programming data
and configuration and has a significantly higher per-
formance. The programmer supports the following
devices: Renesas R8C/M16C/R32C/M32C.

Features

Stand-alone programming

Verification of data integrity

Remote Control via RS232 & Ethernet

High programming speed

Easy integration into production environments
USB interface

Ethernet interface

Flasher ST7

The Flasher ST7 supports the RS232 interface only and of-
fers 512kB of flash memory to store programming data and
configuration. Option byte programming is supported. The
programmer supports the following devices: STMicroelec-
tronics ST7.

Flasher ARM

Flasher ARM uses JTAG or SWD as target interface. Flasher
ARM supports programming of the internal flash for many
MCUs with different ARM cores like: ARM7/9, Cortex-MO0/
MO+/M1/M3/M4/M7.

Additionally Flasher ARM allows programming of external
flash memories connected to any ARM-core. CFl-compliant
flash memories are recognized automatically and can be
programmed directly. Other external memories (like NAND,
SPI-NOR, ...) require an additional RAM code, which is typ-
ically available for popular evaluation boards.

Flasher STM8

The Flasher STM8 connects via SWIM interface with the tar-
get. The target is optically isolated from the host side. The
configuration and operation can be handled with the Flash-
er software for STM8. Option byte programming is support-
ed. The Flasher STM8 supports the following devices:
STMicroelectronics STM8.

Flasher RX

The Flasher RX uses the fastest flash programming algo-
rithm currently available for the Renesas RX. The supported
device families are: Renesas RX600/RX200/RX100.

USB-powered

MSD mode

Internal Web-Server

Serial number programming
Patch programming
Authorized Flashing

Flasher PPC

The Flasher PPC supports the following devices: Freescale
Pictus/STMicroelectronics Bolero.

Flasher Pro

The top model Flasher PRO combines the features and pro-
gramming targets of Flasher ARM, Flasher PPC and Flasher
RX.

Flasher Portable

The Flasher Portable is a battery powered programmer for
targets based on ARM, PPC or RX architectures. It has a
simple interface to allow the selection of different firmware
settings and images stored inside the Flasher.

D —
/ SEGGER

SEGGER Microcontroller is a full-range supplier of hardware and software development tools as
well as middleware for embedded systems — in brief: The Embedded Experts.

The company offers support throughout the whole development process with affordable, high qual-
ity, flexible and easy-to-use tools and components: Starting with its own IDE SEGGER Embedded
Studio, debugging with the industry-leading J-Link, tying in Microcontroller peripherals via its Mid-
dleware, and finally implementing the software on the target through its own Flasher programmers.

SEGGER relies on closed-loop development: Its products have to prove their worth in daily use by
the developers. That’s why it simply works.

Software products include, among others: embOS (RTOS), emWin (GUI), emFile (File System),
emUSB (USB host and device stack) and embOS/IP (TCP/IP stack). With emSSL and emSecure,
a unique software to generate and verify digital signatures, SEGGER is offering solutions for secure
communication as well as data and product security, meeting the needs of the rapidly evolving loT.

The highly integrated, cost-effective tools comprise the Flasher flash programmer and the J-Link/J-
Trace debug probe.

SEGGER was founded in 1997, is privately held, and is growing steadily. Based in Hilden with dis-
tributors in all continents and a local office in Massachusetts, SEGGER offers its full product range
worldwide.

SEGGER Microcontroller GmbH & Co. KG SEGGER Microcontroller Systems LLC
In den Weiden 11 106 Front Street

40721 Hilden Winchendon, MA 01475

Germany United States of America
www.segger.com www.segger-us.com

Tel: +49-2103-2878-0 Tel: +1617-874-1255

E-mail: info@segger.com E-mail: info@segger.com

